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Spontaneously excited pulses in an optically driven semiconductor laser
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In optically injected semiconductor lasers, intrinsic quantum noise alone, namely, the spontaneous emission
and the shot noise, are capable of exciting intensity multipulses from a steady state operation. Noisy lasers
exhibit self-pulsations in the locking region of the corresponding deterministic system. The interpulse time
statistics are studied in parameter regions neark-homoclinic~Shilnikov! bifurcations where the corresponding
deterministic model exhibits single-, double-, and triple-pulse excitability. These statistics differ significantly
among each other, and they could be used to characterize regions of different multipulse excitability in a real
laser device.
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The influence of noise on nonlinear dynamics is an i
portant topical problem being intensively developed in ma
ematics@1# on the one hand and having applications in ph
ics, chemistry@2#, and biology@3# on the other hand.

This paper deals with a modern effect of noise, nam
excitability, an interdisciplinary problem@4#, also recently
found and studied in many laser systems@5–13#. An excit-
able system, after being triggered from its stable equilibri
by a small perturbation above a certain threshold, produc
large response signal before settling back to the equilibri
This phenomenon can be associated with certain geom
realizations in phase space near saddle-node bifurcation
very often near a homoclinic bifurcation@13#. Noise-induced
excitability is related to the more general escape probl
where noise drives a system out of a potential well~corre-
sponding to a stable equilibrium! over the potential barrie
@2,14#. Here we show that the intrinsic noise associated w
spontaneous recombination can excite intensity pulses i
optically injected semiconductor laser.

So far, while studying influence of noise on laser dyna
ics, investigators have mainly focused on semiconductor
sers subject to external optical feedback and lasers with s
rable absorber. Those studies used low~two!-dimensional
mathematical models where the investigators had to ei
choose arbitrary noise level or apply an external source
noise to obtain and study desirable effects. An activated
cape approach was used to study the influence of nois
intensity dropouts in a semiconductor laser subject to ex
nal optical feedback@9,15#, and the same dropout phenom
enon was investigated from an excitability point of view
Ref. @8#. Externally injected noise was applied to obtain c
herence resonance in a laser with saturable absorber@7#. Re-
cently, it was claimed that spontaneous emission noise it
can be essential in organizing the above-mentioned inten
dropouts@16#.

In this paper, we study noise-induced excitability in
semiconductor laser with optical injection at parameter s
tings near a special bifurcation point called Belyakov bifu

*Present address: Sandia National Laboratories. Em
smwiecz@sandia.gov
1063-651X/2004/69~1!/016218~5!/$22.50 69 0162
-
-
-

y,

a
.

ric
nd

,

h
an

-
a-
tu-

er
of
s-
on
r-

-

lf
ity

t-
-

cation @17#, recently found in an injected laser system@12#.
Belyakov points can appear in vector fields that are at le
three dimensional. Near such a point in parameter sp
there existk-homoclinic bifurcation curves which bound re
gions of excitability@12#. At parameter settings inside thos
regions a single perturbation produces a deterministick-pulse
response (k51,2,3,...), an effect called multipulse excitabil-
ity @12#. We will demonstrate that the intrinsic noise of th
laser by itself is able to excite these multipulses, and, furth
more, we show how these regions of single-, double-, a
triple-pulse excitability in a noisy laser can be distinguish
on the basis of the corresponding interpulse time distri
tions.

The dynamics of a single-mode semiconductor laser s
ject to optical injection can be very well modeled by a thre
dimensional system of rate equations@19# for the complex
electric field E5Ex1 iEy and the inversionn ~number of
electron-hole pairs!:

Ėx5K1vEy1 1
2 ~Ex2aEy!n1Fx~ t !,

Ėy52vEx1 1
2 ~aEx1Ey!n1Fy~ t !, ~1!

ṅ522Gn2~112Bn!@Ex
21Ey

221#1Fn~ t !.

Equations~1! are scaled for convenience; the connection
tween the scaled quantities used here and experimental q
tities is given in Ref.@18#.

Spontaneous emission noise as well as shot noise
modeled by a Gaussian white noise with zero mean,

^Fk~ t !&50 ~k5x,y,n!. ~2!

The stochastic terms satisfy:

^Fk~ t !Fl~ t8!&5Dkkdkl~ t2t8! ~k,l5x,y,n!, ~3!

where

Dxx5Dyy5R/~2vRP0!; Dnn5vRJthr /~J2Jthr!
2.

~4!
il:
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Here R51012 s21 is the spontaneous emission rate into t
lasing mode,vR52.231010 rad/s andP050.753105 are
the solitary laser relaxation oscillation frequency and pho
number, respectively,J53.631017 s21 is the pump rate, and
Jthr5331017 s21 is the solitary laser threshold value (J
51.2Jthr). Hence, the values for the normalized diffusio
coefficients areDxx5Dyy53.231024, Dnn51.831026.
These values are normal for an edge-emitting laser. Eq
tions ~1! are integrated using Euler’s method in DsTOO
@20#.

Before we choose parameters to study the stochastic e
tions ~1! we focus on some bifurcations of the correspond
deterministic system~i.e., whenF50). Figure 1~a! shows
the bifurcation diagram of an injected laser in the (K,v)
parameter plane;K is the strength of the light injected int
the laser andv denotes the detuning between the frequen
of the injected light and the frequency of an unperturb
~free running! laser. Stable equilibrium, corresponding
locking to the injected signal, exists for parameter settin
between the lower parts of the saddle-node bifurcation cu
SN and the Hopf bifurcation curveH. These two curves
shown in gray, become tangent at the codimension-two p
G1 @18#. Furthermore, there is a homoclinic bifurcation cur
h1 , shown in black, of one-homoclinic orbit to saddle foc

FIG. 1. The bifurcation diagram of the corresponding determ
istic system in the (K,v) plane.
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s born alongSN. Theh1 curve overlaps withSN and some-
times extends into the locking region, in a form of atooth,
where it intersects with the neutral saddle curvens creating
Belyakov bifurcation points. Belyakov points imply the e
istence of manyk-homoclinic bifurcation curves, forming
tonguesin the (K,v) plane, of which we showh2 andh3 in
Fig. 1. More details on bifurcations near Belyakov points c
be found in Ref.@12#, and references therein.

Figure 2~a! shows a sketch of the phase portrait near~out-
side! the tooth ofh1. The two-dimensional stable manifol
Ws of the saddles forms the excitability threshold. The two
branches of the unstable manifoldWu connect to the stable
equilibriuma. The lower branch ofWu makes a straight con
nection while the upper one forms a loop before coming toa.
Once the laser is perturbed from its stable equilibriuma
above the thresholdWs, it produces an intensity pulse~fol-
lows the upper branch ofWu) before settling back to the
stable equilibrium. Consequently, inside ahk.1 tongue, a
single perturbation above the threshold results ink intensity
pulses@12#; see computed phase portraits~a1!–~a3! in Fig. 3.

The manifoldWu is the most probable escape path fro
the stable equilibrium. Since the parameters were cho
close to the saddle-node bifurcationSN, attraction in the
two-dimensional plane parallel toWs ~nears anda) is much
stronger than repulsion froms along Wu. In consequence
noisy trajectories of the laser~operating near equilibriuma)
stay close toWu during their random walk. Furthermore, th
potential alongWu, sketched in Fig. 2~b!, is so flat that the
noise strength alongWu exceeds the deterministic force eve

-

FIG. 2. Sketch of the phase portrait near~outside! h1 tooth ~a!
and the potential alongWu ~b!.
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SPONTANEOUSLY EXCITED PULSES IN AN . . . PHYSICAL REVIEW E69, 016218 ~2004!
away froms or a. Hence, crossing the excitability thresho
~of the deterministic system! in the noisy laser does not a
ways imply creation of pulses. Noise dominated dynam
nears plus the fact that our system is three dimensional m
us restrict our focus to numerical investigations only.

We now demonstrate that the laser’s intrinsic noise its
is able to excite pulses in an optically injected laser. To t
end we fixv520.89, increaseK across the locking borde
SN of the corresponding deterministic system, and plot
Fig. 4 the reciprocal of the interpulse time intervalt. At
lower K the deterministic laser system~solid curve! oscil-
lates at a frequency that agrees with the averaget21 of the
noisy laser~dots!. As SN is approached, the oscillation pe
riod of the deterministic laser system increases exponent
to infinity. ~This is characteristic for a homoclinic-saddl
node bifurcation@21# actually taking place along this part o
SN @13#.! However, for the noisy laser systemt21 does not
decrease to zero atSN. Instead, due to the noise excite
pulses, the laser oscillates even within the locking reg
~black dots extend beyondSN). The further within the lock-
ing region we go, the fewer excited pulses appear and t
finally disappear~for the length of time series we were ab
to compute! at K'0.4175.

Next we analyze and compare distributions of time int
vals between subsequent noise-induced pulses in region
single-, double-, and triple-pulse excitability. The paramet
for simulations were chosen such that in all three cas
marked by p1–p3 in Fig. 1~b!, the distance between the a
tractor a and the saddles is approximately the same an

FIG. 3. Phase portraits of the deterministic system~a1!–~a3!
together with the corresponding time series~b1!–~b3! featuring
pulses excited by noise. From 1 to 3 (K,v) take values:~0.417,
20.905),~0.459,20.993),~0.4453,20.965) as indicated by p1–p
in Fig. 1~b!.
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equals'2.1. This distance is measured along the most pr
able escape path, which is the lower branch of the unsta
manifold Wu. In this way we compare cases with simila
excitability thresholds.

In a noisy laser one can expect early triggered pulse
occur even when the laser has not yet relaxed to the attra
@8#. In case of single-pulse excitability we expect especia
the ones that are launched just after the first pulse is c
pleted but before the system has settled back to the attra

In the region of the phase space where the two manifo
Ws and the upper branch ofWu, come close to each othe
noise has a chance to kick the trajectory from below to ab
the stable manifold. Once the stable manifold is crossed,
trajectory converges~parallel to the strongly attracting man
fold Ws! to the upper branch ofWu, and repeats the excur
sion alongWu raising an early triggered pulse. This is how
pulse can be triggered before the laser has returned to
attractor. As a result, the corresponding time series cons
of bursts with one or more pulses. The probability distrib
tion from Fig. 5~a! includes the two types of events. The
are the regular pulses launched from the stable equilibriua
and the above-discussed early triggered pulses. In our c
due to slow dynamics alongWu, the timing of early triggered
pulses is spread such that they cannot be distinguished
the total distribution in Fig. 5~a!; note that in some lase
systems early triggered pulses may contribute to a dist
peak in the distribution@8#. The mean interpulse time for th
distribution from Fig. 5~a! equals 3980 ps. This single-puls
excitability distribution is normalized to unity, while the tw
other distributions are normalized such that their tail ar
above 2000 ps are equal in all three cases. This is to facili
the comparison between the ratios of the number of sh
spaced pulses~genuine and early triggered pulses! to the
number of long-spaced pulses~first passage! for the three
types of excitability.

FIG. 4. The laser’s pulsation frequency as the locking regi
indicated by the dashed lineSN, is approached from left to right a
v520.89. Solid line corresponds to the deterministic system
dots correspond to the noisy laser.
8-3
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In the region of double-pulse excitability pulses are e
pected to appear in pairs. Indeed, the interpulse time di
bution from Fig. 5~b! features a distinct peak at the tim
intervals neart'270 ps corresponding to the intrinsic spa
ing between the two pulses of the genuine double pulse.
early triggered pulses are delayed when passing through
region of slow dynamics near~above! the saddle point, in
contrast to the genuine double pulses created during a s
quick excursion near the double loop of the upper part
Wu. These early triggered pulses show up in the distribut

FIG. 5. Probability distributions of interpulse timet for single-
~a!, double-~b!, and triple-pulse~c! excitability. Corresponding pa
rameters as in Fig. 3.
m
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@Fig. 5~a!# as a shoulder of events fort.270 ps. The dashed
line denotes the mean interpulse time in the distribut
~2245 ps! while the dotted line divides the distribution int
two parts with the same number of events~median!.

The interpulse time distribution for triple-pulse excitab
ity @ Fig. 5~c!# has two extra features not present in Fig. 5~a!.
The broad shoulder of events neart between 400 ps and 50
ps corresponds to the spacing between the first and the
ond pulse of the genuine triple pulse. On the other hand,
pronounced peak att'270 ps corresponds to the spacin
between the second and the third pulse of these triple pu
The different appearances of the two intrinsic time spaci
in the distribution is caused by noise. Actually, noise h
more time to influence the longer spacing between the
and the second pulse and, hence, induces more spread i
observed timing between the first and the second pulse.
thermore, a rather intricate structure of the triple loop@see
Fig. 3~a3!# becomes affected by noise. Many bursts in t
time series consist of more than three pulses and the e
triggered pulses tend to be separated by intervalst'300 ps
contributing to the part of the distribution between the tw
intrinsic pulse spacings. The mean interpulse time of t
distribution of 1995 ps@dashed line in Fig. 5~c!# is the short-
est meaning that, on average, one burst consists of m
pulses than in the two previous cases. The dotted line in
5~c! divides the distribution into two parts such that the le
hand part consists of twice as many events as the right-h
part.

We have demonstrated by theoretical analysis that qu
tum noise modeled by random Langevin forces can ex
intensity pulses in an injected semiconductor laser. Hen
the injected laser is a self-excitable system in which the
citation is triggered from within the system and the excitab
ity phenomenon can be studied without applying any ad
tional perturbation.

In particular, noise substantially modifies the dynam
near the locking between the injected field and the laser fi
the noisy laser can produce pulses where the determin
model allows for locking only. This result, presented in F
4, is general in the sense that it is characteristic for a
forced oscillator operating near noncentral homoclin
saddle-node bifurcation of the type studied here. We a
showed how to identify regions of single-, double-, a
triple-pulse excitability by highlighting different features i
their interpulse time distributions. While the multipulse e
citability phenomenon still remains to be experimenta
confirmed, we propose the interpulse time distribution ana
sis as a way to detect and distinguish between different ty
of multipulse excitability in an experiment.

The authors would like to thank Mirvais Yousefi an
Bernd Krauskopf for their helpful input.
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