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Spontaneously excited pulses in an optically driven semiconductor laser
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In optically injected semiconductor lasers, intrinsic quantum noise alone, namely, the spontaneous emission
and the shot noise, are capable of exciting intensity multipulses from a steady state operation. Noisy lasers
exhibit self-pulsations in the locking region of the corresponding deterministic system. The interpulse time
statistics are studied in parameter regions meammoclinic (Shilnikov) bifurcations where the corresponding
deterministic model exhibits single-, double-, and triple-pulse excitability. These statistics differ significantly
among each other, and they could be used to characterize regions of different multipulse excitability in a real
laser device.
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The influence of noise on nonlinear dynamics is an im-cation[17], recently found in an injected laser syst¢i®].
portant topical problem being intensively developed in math-Belyakov points can appear in vector fields that are at least
ematicq 1] on the one hand and having applications in physthree dimensional. Near such a point in parameter space,
ics, chemistry[2], and biology[3] on the other hand. there existk-homoclinic bifurcation curves which bound re-

This paper deals with a modern effect of noise, name|ygi0n3 of EXCItabI|Ity[12] At parameter Settings inside those
excitability, an interdisciplinary problerfd], also recently regions a single perturbation produces a determinkspiolse
found and studied in many laser systefs-13). An excit-  responseK=1,2,3,..), an efect called multipulse excitabil-
able system, after being triggered from its stable equilibriunity [12]. We will demonstrate that the intrinsic noise of the
by a small perturbation above a certain threshold, produces laser by itself is able to excite these multipulses, and, further-
large response signal before settling back to the equilibriummore, we show how these regions of single-, double-, and
This phenomenon can be associated with certain geometrfgiple-pulse excitability in a noisy laser can be distinguished
realizations in phase space near saddle-node bifurcation, af¢ the basis of the corresponding interpulse time distribu-
very often near a homoclinic bifurcatiga3]. Noise-induced tions.
excitability is related to the more general escape problem, The dynamics of a single-mode semiconductor laser sub-
where noise drives a system out of a potential wedlrre-  Ject to optical injection can be very well modeled by a three-
sponding to a stable equilibriunover the potential barrier dimensional system of rate equatioii®] for the complex
[2,14). Here we show that the intrinsic noise associated witrelectric field E=E,+iE, and the inversiom (number of
spontaneous recombination can excite intensity pulses in a@lectron-hole paijs
optically injected semiconductor laser.

So far, while studying influence of noise on laser dynam- E,=K+ wEy+ 3(Ex— aEy)n+Fy(t),
ics, investigators have mainly focused on semiconductor la-
sers subject to external optical feedback and lasers with satu- Ey= — wE,+Y(aE, + E,)n+Fy(t), )

rable absorber. Those studies used l@Gwo)-dimensional

mathematical models where the investigators had to either )

choose arbitrary noise level or apply an external source of n=—2I'n—(1+2Bn)[E{+E;—1]+F(1).

noise to obtain and study desirable effects. An activated es-

cape approach was used to study the influence of noise drquations(1) are scaled for convenience; the connection be-
intensity dropouts in a semiconductor laser subject to extetween the scaled quantities used here and experimental quan-
nal optical feedback9,15], and the same dropout phenom- tities is given in Ref[18].

enon was investigated from an excitability point of view in ~ Spontaneous emission noise as well as shot noise are
Ref.[8]. Externally injected noise was applied to obtain co-modeled by a Gaussian white noise with zero mean,
herence resonance in a laser with saturable absprheRe-

cently, it was claimed that spontaneous emission noise itself (Fo(H))=0 (k=x,y,n). 2
can be essential in organizing the above-mentioned intensity
dropouts[16]. The stochastic terms satisfy:
In this paper, we study noise-induced excitability in a
semiconductor laser with optical injection at parameter set- (FA(OF\(t")=D,Sa(t=t") (k,A=Xx,y,n), (3)
tings near a special bifurcation point called Belyakov bifur-
where
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FIG. 2. Sketch of the phase portrait néantsidé h® tooth (a)
1.02 and the potential alongv" (b).
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sborn alongSN. Theh? curve overlaps wittSN and some-
times extends into the locking region, in a form ofamth
where it intersects with the neutral saddle cunsecreating
Belyakov bifurcation points. Belyakov points imply the ex-
istence of manyk-homoclinic bifurcation curves, forming
HereR=10%s! is the spontaneous emission rate into thetonguesin the (K,w) plane, of which we show? andh?® in
lasing mode,wr=2.2x10" rad/s andP,=0.75x10° are  Fig. 1. More details on bifurcations near Belyakov points can
the solitary laser relaxation oscillation frequency and photorbe found in Ref[12], and references therein.
number, respectivelyl=3.6x 10" s is the pump rate, and Figure 2a) shows a sketch of the phase portrait n@aut-
Jiny=3%10s7! is the solitary laser threshold valug ( side the tooth ofh®. The two-dimensional stable manifold
=1.2);,;). Hence, the values for the normalized diffusion W®° of the saddles forms the excitability threshold. The two
coefficients areD,,=D,,=3.2x10 %, D,,=1.8x10 °.  branches of the unstable manifdld" connect to the stable
These values are normal for an edge-emitting laser. Equaquilibriuma. The lower branch oW makes a straight con-
tions (1) are integrated using Euler's method in DsTOOL nection while the upper one forms a loop before coming. to
[20]. Once the laser is perturbed from its stable equilibriam
Before we choose parameters to study the stochastic equabove the thresholt®, it produces an intensity pulgéol-
tions (1) we focus on some bifurcations of the correspondinglows the upper branch dfV") before settling back to the
deterministic systenti.e., whenF=0). Figure 1a) shows stable equilibrium. Consequently, insiden& ! tongue, a
the bifurcation diagram of an injected laser in th¢,o)  single perturbation above the threshold result& intensity
parameter planeX is the strength of the light injected into pulseq12]; see computed phase portrdiéd)—(a3) in Fig. 3.
the laser andv denotes the detuning between the frequency The manifoldW" is the most probable escape path from
of the injected light and the frequency of an unperturbedhe stable equilibrium. Since the parameters were chosen
(free running laser. Stable equilibrium, corresponding to close to the saddle-node bifurcati@N, attraction in the
locking to the injected signal, exists for parameter settinggwo-dimensional plane parallel #° (nears anda) is much
between the lower parts of the saddle-node bifurcation curvetronger than repulsion frora along W". In consequence,
SN and the Hopf bifurcation curvél. These two curves, noisy trajectories of the laséoperating near equilibriura)
shown in gray, become tangent at the codimension-two poirgtay close tdA" during their random walk. Furthermore, the
G, [18]. Furthermore, there is a homoclinic bifurcation curve potential alongW", sketched in Fig. @), is so flat that the
h!, shown in black, of one-homoclinic orbit to saddle focus noise strength along/"' exceeds the deterministic force even

injection strength K

FIG. 1. The bifurcation diagram of the corresponding determin-
istic system in thel{,w) plane.
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o FIG. 4. The laser’s pulsation frequency as the locking region,
B indicated by the dashed lirgN, is approached from left to right at

w=—0.89. Solid line corresponds to the deterministic system and
dots correspond to the noisy laser.
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FIG. 3. Phase portraits of the deterministic syst@f)—(a3d equals~2.1. This distance is measured along the most prob-
together with the corresponding time seriésl)—(b3) featuring  able escape path, which is the lower branch of the unstable
pulses excited by noise. From 1 to B ) take values(0.417, manifold W". In this way we compare cases with similar
—0.905),(0.459-0.993),(0.4453;-0.965) as indicated by p1-p3 excitability thresholds.
in Fig. 1(b). In a noisy laser one can expect early triggered pulses to

occur even when the laser has not yet relaxed to the attractor
away froms or a. Hence, crossing the excitability threshold [8]. In case of single-pulse excitability we expect especially
(of the deterministic systepin the noisy laser does not al- the ones that are launched just after the first pulse is com-
ways imply creation of pulses. Noise dominated dynamicsleted but before the system has settled back to the attractor.
nears plus the fact that our system is three dimensional make In the region of the phase space where the two manifolds,
us restrict our focus to numerical investigations only. W?® and the upper branch &/, come close to each other

We now demonstrate that the laser’s intrinsic noise itselhoise has a chance to kick the trajectory from below to above
is able to excite pulses in an optically injected laser. To thighe stable manifold. Once the stable manifold is crossed, the
end we fixw=—0.89, increas& across the locking border trajectory convergegarallel to the strongly attracting mani-
SN of the corresponding deterministic system, and plot infold W®) to the upper branch oY, and repeats the excur-
Fig. 4 the reciprocal of the interpulse time interval At sion alongW" raising an early triggered pulse. This is how a
lower K the deterministic laser systefsolid curve oscil-  pulse can be triggered before the laser has returned to the
lates at a frequency that agrees with the averageof the  attractor. As a result, the corresponding time series consists
noisy laser(doty. As SN is approached, the oscillation pe- of bursts with one or more pulses. The probability distribu-
riod of the deterministic laser system increases exponentiallsion from Fig. 5a) includes the two types of events. These
to infinity. (This is characteristic for a homoclinic-saddle- are the regular pulses launched from the stable equilibeium
node bifurcatior{21] actually taking place along this part of and the above-discussed early triggered pulses. In our case,
SN[13].) However, for the noisy laser system! does not  due to slow dynamics along", the timing of early triggered
decrease to zero @N. Instead, due to the noise excited pulses is spread such that they cannot be distinguished from
pulses, the laser oscillates even within the locking regiorthe total distribution in Fig. &); note that in some laser
(black dots extend beyor8N). The further within the lock- systems early triggered pulses may contribute to a distinct
ing region we go, the fewer excited pulses appear and thegeak in the distributiof8]. The mean interpulse time for the
finally disappeacfor the length of time series we were able distribution from Fig. %a) equals 3980 ps. This single-pulse
to compute at K~0.4175. excitability distribution is normalized to unity, while the two

Next we analyze and compare distributions of time inter-other distributions are normalized such that their tail areas
vals between subsequent noise-induced pulses in regions above 2000 ps are equal in all three cases. This is to facilitate
single-, double-, and triple-pulse excitability. The parametershe comparison between the ratios of the number of short-
for simulations were chosen such that in all three casespaced pulse$genuine and early triggered pulse® the
marked by p1-p3 in Fig. (b), the distance between the at- number of long-spaced pulséfrst passagefor the three
tractor a and the saddles is approximately the same and types of excitability.
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025 (a) [Fig. 5(@)] as a shoulder of events fer>270 ps. The dashed
E ] line denotes the mean interpulse time in the distribution
= *F E (2245 p$ while the dotted line divides the distribution into
& F 1 two parts with the same number of evefrisedian.
=F E The interpulse time distribution for triple-pulse excitabil-
vl 1 ity [ Fig. 5(c)] has two extra features not present in Figr)5

o1 .

The broad shoulder of events neabetween 400 ps and 500

ps corresponds to the spacing between the first and the sec-
ond pulse of the genuine triple pulse. On the other hand, the
AT 11| R O pronounced peak at~270 ps corresponds to the spacing

0 500 1000 1500 2000 2500 3000 between the second and the third pulse of these triple pulses.
interpulse time 7 [ps] The different appearances of the two intrinsic time spacings
in the distribution is caused by noise. Actually, noise has
o2E (b) 1 more time to influence the longer spacing between the first
E ] and the second pulse and, hence, induces more spread in the
observed timing between the first and the second pulse. Fur-
thermore, a rather intricate structure of the triple Idspe

3 Fig. 3(@3] becomes affected by noise. Many bursts in the

] time series consist of more than three pulses and the early
- ] triggered pulses tend to be separated by interval800 ps

oosf > contributing to the part of the distribution between the two

E N ] intrinsic pulse spacings. The mean interpulse time of this
0 VA 0% SPL R L distribution of 1995 p$dashed line in Fig. ®)] is the short-
est meaning that, on average, one burst consists of more
pulses than in the two previous cases. The dotted line in Fig.
025 (c) 7 5(c) divides the distribution into two parts such that the left-

1 hand part consists of twice as many events as the right-hand
2:1 ] part.
] We have demonstrated by theoretical analysis that quan-
tum noise modeled by random Langevin forces can excite
intensity pulses in an injected semiconductor laser. Hence,
] the injected laser is a self-excitable system in which the ex-
] citation is triggered from within the system and the excitabil-
] ity phenomenon can be studied without applying any addi-
tional perturbation.

In particular, noise substantially modifies the dynamics
near the locking between the injected field and the laser field:
the noisy laser can produce pulses where the deterministic

FIG. 5. Probability distributions of interpulse timefor single-  model allows for locking only. This result, presented in Fig.
(a), double-(b), and triple-pulsec) excitability. Corresponding pa- 4 is general in the sense that it is characteristic for any
rameters as in Fig. 3. forced oscillator operating near noncentral homoclinic-

) N saddle-node bifurcation of the type studied here. We also

In the region of double-pulse excitability pulses are ex-ghqyed how to identify regions of single-, double-, and
pected to appear in pairs. Indeed, the interpulse time distrigjyie_nyise excitability by highlighting different features in
bution from Fig. $b) features a distinct peak at the time yheir jnterpulse time distributions. While the multipulse ex-
intervals nearr~270 ps corresponding to the intrinsic Spac- jiapility phenomenon still remains to be experimentally
ing between the two pulses of the genuine double pulse. Theynfirmed, we propose the interpulse time distribution analy-
early triggered pulses are delayed when passing through thgs 45 3 way to detect and distinguish between different types

region of slow dynamics nedabove the saddle point, in ¢ multipulse excitability in an experiment.
contrast to the genuine double pulses created during a single

quick excursion near the double loop of the upper part of The authors would like to thank Mirvais Yousefi and
WY, These early triggered pulses show up in the distributiorBernd Krauskopf for their helpful input.
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